Many of the electronic devices used today serve a similar purpose as they did 10 years ago, and yet many have become smaller, faster, lighter and with the ability to be used virtually everywhere. For this to be possible, electronics need to be protected against shock, water, heat, and other elements encountered during their use. This forms the question, “how are these shrinking and lightweight electronic devices assembled to function reliably and stay protected long term?” To help answer this question, we connected with Jeff Bowin, TCS Principal Engineer at Henkel to learn more about this topic and the technologies that have been developed to help ruggedize electronic devices. Ruggedization involves a multi-protection solution from damaging environmental factors, such as extreme temperatures, fluids, corrosive elements, shock and vibration. It provides both mechanical reinforcement and electrical insulation.
In the medical field reliability within these devices is essential, and allows for continuous and advanced patient care. Ruggedization can be seen in all electronics but some require special protection to their environments. For example, a continuous glucose monitoring patch is placed onto the human body and it might not need to withstand extreme temperatures as the human body is not that hot but it needs to be protected against other factors like sweat and impacts. Some of the applications used in this patch might be underfills and structural staking.